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WHAT IS THE YOUNG’S MODULUS OF ICE?. F. Nimmo, Dept. Earth and Space Sciences, University of California Los

Angeles, (nimmo@ess.ucla.edu).

The Young’s modulus E of ice is an important parameter in
models of tidal deformation [1, e.g] and in converting flexural
rigidities to ice shell thicknesses [2, e.g.]. There is a disagree-
ment of an order of magnitude between measurements of E in
the laboratory (9 GPa) and from field observations (=1 GPa).
Here I use a simple yielding model to address this discrepancy,
and conclude that E = 9 GPa is consistent with the field obser-
vations. I also show that flexurally-derived shell thicknesses
for icy satellites are insensitive to uncertainties in E.

Lab Measurements Because ice may creep or fracture un-
der an applied stress, it behaves elastically only if the loading
frequency is high and stresses are small. Lower tempera-
tures expand the parameter space in which elastic behaviour is
expected. The most reliable way of determining F in the lab-
oratory is to measure the sound velocity in ice and thus derive
the elastic constants. The values of E found are consistently
about 9 GPa [3; 4].

Field Measurements Field techniques rely on observing
the response of ice shelves to tidal deformation [5]. In this case,
loading frequencies are much lower (~ 1073 Hz) and stresses
much higher (~1 MPa). Fractures are commonly observed,
and creep is also likely to occur [6]; thus, not all of the shelf
may respond in an elastic fashion.

The length-scale of the response of an ice shelf to tidal
deformation is determined by the parameter 3 [7], where:

+ 3pg(1—1?)
B = —E3 0))

Here p is the density of the sea, g is the acceleration due
to gravity, v is Poisson’s ratio and T is the effective elastic
thickness of the ice shelf. The effective elastic thickness is
defined as the thickness of a purely elastic plate which would
produce the same response to loading as the actual ice shelf.
Note that T will be less than the total ice shelf thickness h if
ductile creep or fracture are important [8].

Field measurements of ice shelf deformation allow (3 to be
determined [7]. Inspection of equation 1 shows that in order
to derive E, a value for T, must be assumed. One approach is
to assume that the elastic thickness T is the same as the total
ice shelf thickness h, which may be measured directly. Doing
so results in values for E which are significantly smaller than
the lab values. For instance, Vaughan [7] concluded that the
effective Young’s modulus from a variety of tidal deformation
studies was 0.88 4 0.35 GPa. [9] used radar observations of
tidal flexure to conclude that F varied in both time and space,
from 0.8 to 3.5 GPa. They ascribed the variation to visco-
plastic effects. Similarly, [10] observed a time-delay between
tidal forcing and ice-shelf response, which is also probably
due to viscous effects.

Tension fractures are inferred to form at both the top and
bottom of ice shelves due to tidal flexure, and may be tens
of metres deep [11, p. 204]. The presence of these fractures
will reduce the effective elastic thickness Te of the ice shelf.

Furthermore, for typical curvatures of 107® m ™' and shelf
thicknesses of 1 km (see Table 1), the maximum elastic stresses
will be O(1) MPa . These stresses are comparable to or exceed
the likely elastic limit of ice [12] and suggest that much of the
ice shelf will deform in a ductile rather than elastic fashion
(see also [9]). It would therefore be surprising if the simple
assumption that T. = h were correct. An alternative [5; 13]
is to assume that the effective elastic thickness of the ice shelf
is some fraction of the total shelf thickness. Doing so results
in a larger value of E; equation 1 shows that reducing T to
50% of the ice shelf thickness results in an eight-fold increase
in E. This increase is sufficient to bring the field results into
agreement with the laboratory measurements.

Yielding Model Below I develop a simple model to show
the effect of ice yielding on Te. It will be assumed that the
ice is an elastic-perfectly plastic material [14] where the stress
increases linearly with strain up to a particular yield stress, o,
and remains constant thereafter. The perfectly plastic regime
represents the area in which either fracturing or ductile flow
occurs.

The first moment of the stress-depth relationship for this
rheology may be used to infer the effective elastic thickness Te
of the material [8]. Assuming that stress profile is symmetrical,
it can be shown that
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where K is the curvature and it is assumed that 20 (1 —
uz) < EKh. If this inequality is not satisfied, the whole shelf
behaves elastically and Te = h.

The yield stress of ice is not well known, and probably
varies with both temperature and strain rate. [12] argues that a
yield stress of 0.1 MPa is appropriate for glacier ice. [15] show
that the yield stress is independent of pressure, but depends on
temperature and strain rate. Extrapolating their results to a
strain rate of 10~8 s~ suggests yield stresses of 0.6 MPa at
—5°C. A fracture depth of 10-100 m implies an effective yield
stress of 0.1-1 MPa. I assume that v=0.3, p = 1000 kg m 3,
g = 9.8 m s~ 2 and generally use E=9 GPa.

Table 1 lists the observational data from [7]. Rather than
assuming that Te = h, column 4 lists the implied value of Te. / k.
assuming that E=9 GPa and using equation 1. Column 5 lists
the value of T/ h obtained using the yielding model (equation
2). The agreement is generally quite good (except for Jakob-
shavn) and shows that yielding is a valid way of explaining
the observations, and is consistent with the laboratory-derived
value of E (9 GPa).

In summary, the observed flexure at ice shelves can be
reconciled with the laboratory-determined values of E, if some
fraction of the shelf experiences yielding (either fracture or
creep). Yielding is expected to occur based on the likely
behaviour of ice, and a simple elastic-plastic model shows that
the amounts of yielding required are reasonable.
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Table 1: The values of 3 and h are obtained from [7]. Te/h
(obs.) is the value inferred from equation 1 using the observed
B3 and h and assuming that E=9 GPa. Te/h (theor.) is the
value inferred from equation 2 assuming o,=0.3 MPa.

Icy satellites The ice shells of outer solar system satellites
differ in several respects from terrestrial ice shelves. Firstly,
strain rates are lower: around 107'° s™! on Europa, and
less elsewhere. Secondly, surface temperatures are very much
lower (typically 100-120 K), indicating that the ice may deform
in a brittle fashion. Thirdly, the ice shells are probably 10’s-
100’s km thick, implying that creep, rather than fracture, will
occur towards the base of the ice shell. It is therefore more
appropriate to use the yield-strength envelope (YSE) approach
of [16; 8]. In this model, the near-surface ice deforms in a
brittle manner, that at the base deforms in a ductile fashion,
and that near the mid-plane elastically. The YSE approach
allows us to convert a measurement of rigidity into a shell
thickness, given a value for E. The conversion depends on the
strain rate and curvature of the feature.

As an example, we will use an apparently flexural fea-
ture on Europa studied by [2]. We assume a conductive ice
shell in which the thermal conductivity varies as 567 /T and
the top and bottom temperatures are 105 K and 260 K, re-
spectively. The values of p,g and the coefficient of friction
are 900 kg m™3, 1.3 m s~ 2 and 0.6, respectively. We will
use the grain-boundary sliding (n=2.4) rheology of [17] which
is grain-size independent. The strain rate is assumed to be
1071 571

[2] obtained a flexural parameter 3 of 6.25 x 107° m™!
and a maximum curvature of 7.5 X 10~7 m™'. Assuming a
Young’s modulus of 9 GPa, equation 1 gives T.=2.8 km and
the YSE approach gives a conductive ice shell thickness of
11 km. Taking E=1 GPa yields a T, of 6 km and a shell
thickness of 12 km. Increasing strain rate by two orders of
magnitude decreases the inferred shell thickness by 1 km.
Reducing the friction coefficient by 30% increases the shell
thickness by 1 km. Using the grain-boundary sliding (n = 1.8)
rheology of [17] with a grain-size of 1 mm reduces the shell
thickness by 1 km. Thus, uncertainties in most parameters do
not significantly affect the final result.

The shell thickness is insensitive to variations in E because
the elastic portion of the shell is small. Hence, the YSE
approach is a robust way of converting estimates of rigidity
into ice shell thicknesses.
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